Live Demo: Build Scalable Event-Driven Microservices with Confluent | Register Now
Unlike just a few years ago, today the lakehouse architecture is an established data platform embraced by all major cloud data companies such as AWS, Azure, Google, Oracle, Microsoft, Snowflake and Databricks.
This session kicks off with a technical, no-nonsense introduction to the lakehouse concept, dives deep into the lakehouse architecture and recaps how a data lakehouse is built from the ground up with streaming as a first-class citizen.
Then we focus on serverless for streaming use cases. Serverless concepts are well-known from developers triggering hundreds of thousands of AWS Lambda functions at a negligible cost. However, the same concept becomes more interesting when looking at data platforms.
We have all heard about the principle ""It runs best on Powerpoint"", so I decided to skip slides here and bring a serverless demo instead:
A hands-on, fun, and interactive serverless streaming use case example where we ingest live events from hundreds of mobile devices (don't miss out - bring your phone and be part of it!!). Based on this use case I will critically explore how much of a modern lakehouse is serverless and how we implemented that at Databricks (spoiler alert: serverless is everywhere from data pipelines, workflows, optimized Spark APIs, to ML).
TL;DR benefits for the Data Practitioners: -Recap the OSS foundation of the Lakehouse architecture and understand its appeal