Log Compaction

Log Compaction | Highlights in the Kafka and Stream Processing Community | February 2016

Gwen Shapira
Last Updated: 

Welcome to the February 2016 edition of Log Compaction, a monthly digest of highlights in the Apache Kafka and stream processing community. Got a newsworthy item? Let us know.

  • We’ve been discussing many improvement proposals this month
    • KIP-41 – a proposal to limit the number of records returned by KafkaConsumer.poll method has been accepted.
    • KIP-42 – a proposal to add interceptors to producers and consumers has been accepted. This improvement creates interesting new monitoring options and once this is implemented, it will be interesting to hear how to community is using the new APIs.
    • KIP-43 and KIP-44 propose improvements and extensions to Kafka’s authentication protocols. These are still under active discussion, and if you are interested in security in Kafka, I suggest reading the wiki and the discussion to see where we are heading.             
    • KIP-45 – a proposal to standardize the various collections that the KafkaConsumer API expects is still under discussion, with the benefits of more standardized approach being weighed against the desire to maintain backward compatibility for this new API.
  • Many of us are just learning the ins and outs of the new consumer. This recently published blog post, with a complete end-to-end example proves very useful.
  • A passionate developer wrote very detailed blog posts on Kafka integration with Spark Streaming. This includes the little-discussed question of how to write the results of the stream processing job back into Kafka.
  • LinkedIn wrote about new features in Samza. The blog post also includes sexy throughput numbers, description of their use-case and description of how Samza is used in their data products. Really cool stuff.
  • Google contributed their Dataflow API (but not implementation) to the Apache Software Foundation and are inviting other stream processing projects to implement their SDK. We are watching to see where this will take the active stream processing community.

Subscribe to the Confluent Blog

Subscribe

More Articles Like This

Providing Timely, Reliable, and Consistent Travel Information to Millions of Deutsche Bahn Passengers with Apache Kafka and Confluent Platform
Axel Löhn

Providing Timely, Reliable, and Consistent Travel Information to Millions of Deutsche Bahn Passengers with Apache Kafka and Confluent Platform

Axel Löhn

Every day, about 5.7 million rail passengers rely on Deutsche Bahn (DB) to get to their destination. Virtually every one of these passengers needs access to vital trip information, including […]

Kafka Streams and ksqlDB Compared – How to Choose
Dani Traphagen

Kafka Streams and ksqlDB Compared – How to Choose

Dani Traphagen

ksqlDB is a new kind of database purpose-built for stream processing apps, allowing users to build stream processing applications against data in Apache Kafka® and enhancing developer productivity. ksqlDB simplifies […]

Real-Time Analytics and Monitoring Dashboards with Apache Kafka and Rockset
Shruti Bhat

Real-Time Analytics and Monitoring Dashboards with Apache Kafka and Rockset

Shruti Bhat

In the early days, many companies simply used Apache Kafka® for data ingestion into Hadoop or another data lake. However, Apache Kafka is more than just messaging. The significant difference […]

Fully managed Apache Kafka as a Service!

Try Free