デモに登録 | 大規模な RBAC、Oracle CDC Source Connector など、Confluent Cloud 第2四半期のローンチの活用を開始

How Confluent Can Help Optimize and Modernize Your SIEM for Better Cybersecurity

In the last few years, we’ve seen hugely impactful cyberattacks that have grabbed the attention of the media, the security community, and the IT industry. The WannaCry attack, for instance, aimed at extorting money from its victims, with an estimated total financial impact of over $4B in losses across the globe. The SolarWinds breach in 2019, which attacked the network management systems of many organizations including the U.S. Treasury Department, the Department of Defense, and over 425 Fortune 500 companies, caused massive disruption and leaks of substantial private information. And in 2021, we saw a slew of disruptive attacks on some of the nation’s largest organizations like CNA Financial, Colonial Pipeline, Kaseya, crippling enterprise operations and disrupting business continuity.

Cyberthreats to citizens and organizations have become so grave that the current U.S. administration issued an executive order in 2021 entitled Improving the Nation’s Cybersecurity noting that “recent cybersecurity incidents such as SolarWinds, Microsoft Exchange, and the Colonial Pipeline incident are a sobering reminder that U.S. public and private sector entities increasingly face sophisticated malicious cyber activity from both nation-state actors and cyber criminals.”

According to the most recent annual report by IBM, the average cost of a single security incident hit $4.24 million—the highest cost in the 17-year history of the report. If that cost doesn’t scare you enough, the same report declares that it takes an average of 287 days to identify and contain a data breach.

Over the last 15+ years, many organizations have relied on Security Incident and Event Management (SIEM) tools to protect their environment and improve security operations. However, since threat vectors are creative and elusive, the existing tools struggle to detect and respond to new threats in a timely manner and cannot always be effectively integrated end to end in order to respond to new threats as early as possible, and at scale. While SIEM platforms have proven their worth and have a definite place in your cybersecurity strategy, there’s still a real need to incorporate and integrate data beyond their capabilities. Confluent has established itself as a critical component for SIEM strategies, providing the means for integrating disparate data across many systems in real time.

The need for SIEM modernization

SIEM tools aggregate data from multiple log sources, enabling search and investigation of security incidents and specific rules for detecting attacks. Popular SIEM offerings include Splunk, ArcSight, Elastic, Exabeam, and Sumo Logic. These systems work by collecting event data from a variety of sources like logs, applications, network devices, servers, and firewalls, using proprietary collection agents to bring it all directly into their centralized platform.

Typical SIEM architecture
Architecture of a typical SIEM platform

There are a number of deficiencies with existing real-world SIEM solutions. The top three include fragmentation of operations, a lack of incident response agility, and high costs due to big data scale. Let’s take a look at each one of these.

Multi-platform fragmentation

Cybersecurity is one of the biggest priorities for most enterprises, but there are often multiple groups sharing the responsibility. This, coupled with differing capabilities and cost, has resulted in the frequent adoption of multiple SIEM tools in many enterprises. Standardizing on a single tool can be difficult and sometimes, even impractical. This leads to a fragmented solution to the more general problem of cybersecurity, making it difficult for security operations teams to obtain a coordinated security view.

When you factor in the frequent use of multiple SIEM tools the architecture looks more like this:

Multiple SIEM platforms
More than one SIEM platform is usually in use

Indeed this picture is highly simplified since the lines are neatly symmetrical, going to all the agents. In reality, the different data sources will be mapped to different tooling, the level of coverage will be different, and not all data sources will be covered.

The fragmentation of SIEM platforms and data causes a number of issues. It’s difficult to use data across vertical SIEM instantiations. Data engineering work needs to be done separately for each tool which leads to duplication of effort in both development and maintenance. Bringing new tools to bear is even harder, creating yet another fragment each time. Plus, shifting workloads from one tool to another is difficult. For example, suppose you decide that you want to send all the DNS data to Elastic rather than sending it to Splunk, there’s no real easy way to accomplish this.

Batch-oriented architectures preclude real-time insights

Traditional SIEM tools are based on data at rest batch-oriented architectures. While batch operations are good for collecting data and running complex searches to find threats and vulnerabilities against a historical corpus, they are not designed to provide an up-to-date picture of what’s going on right now. This means organizations solely relying on these tools simply lack the real-time insights to quickly mount an effective security response.

This article specifically discusses the problem of delayed events going unnoticed, the impact of it, and how to detect it. Reading between the lines, care must be taken to implement the special approaches discussed there, and when that care isn’t taken, significant events can be missed. It’s better to apply an architecture that’s built for event streaming and can natively handle datasets that may arrive out of order but where timeliness is important.

Lack of incident response agility

Fragmentation combined with insufficient observability leads to lack of agility in the face of an evolving threat landscape. Cyberattacks and vulnerabilities are unpredictable and therefore hard to proactively plan for. Data relevant to security can live anywhere from filesystems, to general purpose databases to transient network packets, and their relevance varies highly at any given time depending on the threat vector. Each of these data sources need to be integrated into an end-to-end modernization effort, to allow for recombination of data for threat analysis. Additionally, incorporating new data sources must be quick and easy, to access previously uncaptured data for use in resolving live incidents.

Capturing and integrating data is only one piece of the response. You must also be able to incorporate new rules and machine learning models to detect both environmental vulnerabilities and ongoing cyberattacks. But in a fragmented SIEM environment, each individual tool uses its own set of agents and rules, not only resulting in noisy alerts but also making operational agility difficult to achieve. In addition, search, discovery, and implementation is further compromised by the SIEM-specific fragmented storage.

Big data scale drives up costs

SIEM relevant data can come from anywhere and signs of a vulnerability can span any volume of data. This can translate to a massive “big data” problem where the need to keep tabs on large data volumes and heterogeneous data sources drive up costs when integrated with a traditional SIEM product, often as a result of the consumption-rate, volume-based pricing model. While there is definitive incentive to send more data to SIEM tools to maximize the benefits that these tools deliver, the more recklessly you collect and analyze data in SIEMs the more financially unviable they become. As a result, many organizations end up compromising on the data they collect. They leave out high-volume sources and hope that their SIEM operations would still be just as robust, forcing a difficult balancing act between cost and security.

Confluent augments your SIEM strategy

Confluent lets you maximize your investment in your preexisting SIEM infrastructure by helping you incorporate data from different sources for threat detection in real time. This exposes potential threats for analysis at different levels of granularity for multiple tools. By providing each SIEM tool with all of the data it needs for a comprehensive analysis, your security response team can focus their efforts on detecting threats and analyzing suspicious patterns instead of simply trying to get access to the data. Confluent also provides you with a powerful stream processing platform to let you nimbly detect threats in real time.

Augment your SIEM platforms with Confluent for a better cybersecurity posture

Confluent’s solution for SIEM optimization augments your cybersecurity platforms to break down silos and deliver contextually rich data to be more situationally aware. With a broad selection of connectors, our platform offers the solution to the fragmentation problem, allowing you to ingest real-time data streams from the relevant data sources, and write enriched streams to any sink. Stream processing within Confluent allows businesses to develop and deploy new threat detection rules to these data streams on the fly, improving operational agility. Plus, the overall lower TCO of Confluent can help expand the coverage of your SIEM tools while minimizing costs.

How to build a SIEM and observability pipeline with Apache Kafka® and Confluent

Confluent enables organizations to bridge the gap between old-school SIEM solutions and next-gen offerings by consolidating, categorizing, and enriching all data (such as logs, network data, telemetry and sensor data) and real-time events from relevant data sources for real-time monitoring, security forensics, and an enhanced cybersecurity posture. It serves as the curation fabric to ingest, aggregate, transform, filter, and clean a broad set of data streams, so that the plethora of analytic processors can consume just the right amount of data depending on the use case.

Our contemporary SIEM solution achieves the following goals:

  • Enables organizations to move from batch to real time at scale by serving as the real-time data pipeline for SIEM data. This enables faster iteration and response.
  • Stream processing from Confluent provides agility and incident detection by enriching event data in flight with additional context.
  • Stream processing also enables threat detection in live streams of data that are too cost prohibitive to store and index in the SIEM, reducing data indexing, analysis and storage costs, and mitigating the trade-offs between cost and visibility.
  • The increased flexibility offered by Confluent helps organizations improve the return on investment in the tools that work best for them.

Confluent capabilities used for SIEM
Confluent capabilities used for SIEM

Embed Sigma rules into your event streams with Confluent Sigma

There’s a gap between the analysis required by a security operations center (SOC) and generic real-time stream processing offered by Confluent out of the box. ksqlDB and Kafka Streams are highly capable but generic stream processing engines with no SIEM-specific logic baked in.

The Sigma project provides a robust language for describing patterns in network data designed to be used on any platform. Sigma is a generic and open signature format to describe relevant log events in a straightforward manner. As a domain specific language, Sigma provides a way of exchanging known threat detection patterns across and between organizations.

To bridge that gap, and at the behest of some of our customers, Confluent’s field team created the open source community project Confluent Sigma. Confluent Sigma natively understands Sigma rules and executes them using Kafka Streams, applying the rules to real-time streams of observability data in Kafka. Sigma rules themselves are published into Kafka and are picked up immediately by Confluent Sigma. This approach means that as new patterns are observed or existing ones are changed they will immediately take effect, minimizing response time.

Anomalies detected in the stream processing layer

This presentation provides a detailed walk-through of Confluent’s applicability to SIEM, introduces Confluent Sigma, shows an end-to-end demo of it in action for real-time threat detection, and illustrates how you can bridge the gap between old-school SIEM solutions and a next-gen architecture.

You can also try this demonstration out yourself either in-browser using Gitpod or from Docker.

Let’s take a quick look at the example from the presentation on Confluent’s role in a cybersecurity use case in flagging suspicious activity in the DNS logs of the TCP replay.

Step 1: Connect your data to Confluent

The first thing you need to do is ensure you have your data sources connected to Confluent. For example, data can be sourced from Splunk, syslogs, and elsewhere. In the figures below (excerpted from the presentation), we ingest data from Splunk and syslog using our Splunk S2S and syslog connectors:

Data from Splunk S2S after ingestion by Confluent
Data from Splunk S2S after ingestion by Confluent

Syslog data as ingested by Confluent
Syslog data as ingested by Confluent

Step 2: In-flight stream processing

These data streams from different and unrelated sources can be combined and processed together in flight using ksqlDB. This is shown below:

ksqlDB processing disparate streams together
ksqlDB processing disparate streams together

Step 3: Design your Sigma rules

The project provides a basic UI to specify rules, although they can also be specified by CLI:

Confluent Sigma rule as seen through a viewer
Confluent Sigma rule as seen through a viewer

In the example, Confluent Sigma is used to specify rules to flag suspicious activity in the DNS logs of the TCP replay. We tweak the sensitivity of the filter during the demo to show how we can nimbly iterate on development of the detection rules as the incident unfolds. Then the enriched and flagged data is surfaced in different levels of granularity to both Splunk and Elastic for analysis by different teams.

Step 4: Execute the rules

Sigma rules are published to a Kafka topic where they are parsed and executed by the stream processor. In this case we look at DNS query traffic for suspicious messages:

Executing a Confluent Sigma rule stored in a Kafka topic
Executing a Confluent Sigma rule stored in a Kafka topic

ksqlDB is used again to flag specific data from Splunk for individual analysis in Elastic:

Selecting specific events from Splunk in ksqlDB for downstream analysis in Elastic
Selecting specific events from Splunk in ksqlDB for downstream analysis in Elastic 

Sink connectors to Elastic and Splunk are used to export the flagged data as well as granular enriched network traffic data.

Here is the Splunk interface showing this data:

After data is synthesized in Confluent, it’s sent to Splunk
After data is synthesized in Confluent, it’s sent to Splunk

And Elastic:

Similar data sent to Elastic for separate analysis
Similar data sent to Elastic for separate analysis

Confluent goes a long way toward solving the problems faced by users of SIEM tools today.

Confluent’s solution for SIEM enables fragmented tools to share data with each other using Kafka as the central nervous system, with the ability to scan and process the streaming data as it flows between them. None of the tools are displaced from what they do well, and new data sources and tools can be added as needed.

Unlike traditional SIEM tools which are rooted in batch architectures, Confluent can deliver and process event data as it is generated. Working with different time characteristics and late arriving data is table stakes for any stream processor, and Confluent is no exception. Confluent provides robust and complete stream processing natively through both Kafka Streams and ksqlDB.

Confluent can tap all data streams, sift through them, and present a distilled version to the SOC to improve incident response effectiveness.

Lastly, Confluent’s solution for SIEM can address these issues in a high volume, scalable, and cost-effective manner.

Learn more

There’s a lot that Confluent can do to help you optimize your SIEM platforms. So, here are links to some of our most-popular resources to help you get started:

Jeff Bean provides technical collateral as a Sr Technical Marketing Manager in Confluent’s Product Marketing team. He was formerly responsible for the verified integrations program at Confluent, helping ISVs with their Confluent integrations. Prior to Confluent, Jeff held various roles at Cloudera and was also a technical evangelist at Ververica.

Will LaForest is Field CTO Americas and Public Sector for Confluent. In his current position, Mr. LaForest works with customers across a broad spectrum of industries and government enabling them to realize the benefits of a data in motion architecture with event streaming.  He is passionate about data technology innovation and has spent 26 years helping customers wrangle data at massive scale. His technical career spans diverse areas from software engineering, NoSQL, data science, cloud computing, machine learning, and building statistical visualization software but began with code slinging at DARPA as a teenager. Mr. LaForest holds degrees in mathematics and physics from the University of Virginia.

Did you like this blog post? Share it now

Subscribe to the Confluent blog

More Articles Like This

Securing Your Logs in Confluent Cloud with HashiCorp Vault

Logging is an important component of managing service availability, security, and customer experience. It allows Site Reliability Engineers (SREs), developers, security teams, and infrastructure teams to gain insights to how

How to Visualise Confluent Cloud Audit Log Data

At Confluent, we’re serious about security, and we’re focused on simplifying security visibility across our cloud and on-premises solution. This blog demonstrates how to monitor Confluent Cloud authorization events using

Stream Governance – How it Works

At the recent Kafka Summit, Confluent announced the general availability of Stream Governance–the industry’s only governance suite for data in motion. Offered as a fully managed cloud solution, it delivers