Confluent
Streams and Tables: Two Sides of the Same Coin
Stream Processing

Streams and Tables: Two Sides of the Same Coin

Matthias J. SaxGuozhang Wang

We are happy to announce that our paper Streams and Tables: Two Sides of the Same Coin is published and available for free download. The paper was presented at the Twelfth International Workshop on Real-Time Business Intelligence and Analytics (BIRTE) held in conjunction with the 44th International Conference on Very Large Data Bases (VLDB) in Rio de Janeiro, Brazil, in August of this year.

The BIRTE workshop attracted many participants and hosted a keynote, research, industry and demo session as well as a panel discussion about data stream processing.

Paper summary

The paper is a joint work between Confluent and Humboldt-Universität zu Berlin that describes the Dual Streaming Model, which is the foundation of Kafka Streams’ and KSQL’s stream processing semantics:

In this paper, we introduce the Dual Streaming Model to reason about physical and logical order in data stream processing. This model presents the result of an operator as a stream of successive updates, which induces a duality of results and streams. As such, it provides a natural way to cope with inconsistencies between the physical and logical order of streaming data in a continuous manner, without explicit buffering and reordering. We further discuss the trade-offs and challenges faced when implementing this model in terms of correctness, latency, and processing cost. A case study based on Apache Kafka illustrates the effectiveness of our model in the light of real-world requirements.
Original Source

The Dual Streaming Model builds on the so-called stream-table duality, which allows you to unify data streams and relational tables into a holistic data processing model. Thus, data streams and continuously updating tables are the two core abstractions in the model. Additionally, the Dual Streaming Model decouples the handling of data that arrives later (i.e., out-of-order) from latency concerns and opens up a design space between processing cost, accepted latency and result completeness for the user that no other model offers.

Figure 1. Design Space

Figure 1. Design space

The wide adoption and growth of Kafka Streams and KSQL among enterprises shows that the Dual Streaming Model solves real-world problems across all types of industries. As a result, we are elated to share our paper for free so you can become the stream processing expert in your company and take the business to the next level.

Happy reading! 🙂

Next steps

Subscribe to the Confluent Blog

Subscribe

More Articles Like This

Event Streaming Platform
Robin Moffatt

🚂 On Track with Apache Kafka – Building a Streaming ETL Solution with Rail Data

Robin Moffatt .

Trains are an excellent source of streaming data—their movements around the network are an unbounded series of events. Using this data, Apache Kafka® and Confluent Platform can provide the foundations ...

Static Membership
Boyang Chen

Apache Kafka Rebalance Protocol for the Cloud: Static Membership

Boyang Chen .

Static Membership is an enhancement to the current rebalance protocol that aims to reduce the downtime caused by excessive and unnecessary rebalances for general Apache Kafka® client implementations. This applies ...

Derivative Event Sourcing
Anna McDonald

Introducing Derivative Event Sourcing

Anna McDonald .

First, what is event sourcing? Here’s an example. Consider your bank account: viewing it online, the first thing you notice is often the current balance. How many of us drill ...

Fully managed Apache Kafka as a Service

Try Free

We use cookies to understand how you use our site and to improve your experience. Click here to learn more or change your cookie settings. By continuing to browse, you agree to our use of cookies.