Hands-on Workshop: ZooKeeper to KRaft Without the Hassle | Secure Your Spot

ANWENDUNGSFALL | SHIFT-LEFT ANALYTICS

Weniger Datenbereinigung. Mehr Entwicklung.

|

Bereit, die unnötige Datenvermehrung und manuelle Fehlerbehebung in Daten-Pipelines zu beenden? Daten an der Quelle mit einer Daten-Streaming-Plattform verarbeiten und verwalten – innerhalb von Millisekunden nach ihrer Erstellung.

Durch die Vorverlagerung der Verarbeitung und Governance können Probleme mit der Datenqualität um bis zu 60 % reduziert, die Rechenkosten um 30 % gesenkt und die Produktivität der Entwickler sowie der ROI des Data-Warehouse maximiert werden. Jetzt weitere Ressourcen für den Einstieg entdecken oder Shift Left: Unifying Operations and Analytics With Data Products herunterladen.

Why Shift Processing & Governance Left?

In data integration, “shifting left” refers to an approach where data processing and governance are performed closer to the source of data generation. By cleaning and processing the data earlier in the data lifecycle, you can build data products that give all downstream consumers—including cloud data warehouses, data lakes, and data lakehouses—a single source of well-defined and well-formatted data.

Deliver Reusable, Trustworthy Data Products

Process data and govern data once at the source, and reuse in multiple contexts. Use Apache Flink® to shape data on the fly.

Power Analytics With the Freshest, High-Quality Data

Maintain high-fidelity data that’s continuously flowing into your lakehouse, and evolving seamlessly with Tableflow.

Maximize the ROI of Data Warehouses and Data Lakes

Reduce data quality issues by 40-60% and free up your data engineering team to work on more strategic projects.

Trends in Shift-Left-Analytics

A diagram showing the foundational data flow of Shift Left architecture
Wiederverwendbare Datenprodukte erstellen mit einem Shift-Left-Ansatz

Jetzt alles über Shift-Left-Analytics erfahren und wie dieser einfache, aber wirkungsvolle Ansatz zur Datenintegration moderne Unternehmen bei der Innovation unterstützt.

Webinar ansehen

Prevent Bad Data in Streams

Show Me How: Shift Left Processing From Data Warehouses

Watch now
Confluent Lakehouse icon for Shift Left hub

How to Optimize Data Ingestion Into Lakehouses & Warehouses

Get the guide
Tableflow padded icon

Tableflow Is GA: Unifying Apache Kafka® Topics & Apache Iceberg™️ Tables

Read blog
Conquer Data Mess ebook

Conquer Your Data Mess With Universal Data Products

Download ebook

Daten-Streaming-Projekte beschleunigen mithilfe unserer Partner

Wir arbeiten mit unserem umfangreichen Partner-Ökosystem zusammen, um es Kunden zu erleichtern, unternehmensweit hochwertige Datenprodukte zu entwickeln, darauf zuzugreifen, sie zu entdecken und zu teilen. Jetzt herausfinden, wie innovative Unternehmen wie Notion, Citizens Bank und DISH Wireless die Daten-Streaming-Plattform sowie unsere nativen Cloud-, Software- und Serviceintegrationen nutzen, um die Datenverarbeitung und Governance nach links zu verschieben und den Wert ihrer Daten zu maximieren.

Notion logo black

Notion Enriches Data Instantly to Power Generative AI Features

Citizens Bank logo green

Citizens Bank Improves Processing Speeds by 50% for CX & More

Dish Wireless color logo card

DISH Wireless Creates Reusable Data Products for Industry 4.0

Maximize Your Data Warehouses in 4 Steps

Maximize your data warehouses and data lakehouses by feeding them fresh trustworthy data. It all starts when you have a complete data streaming platform that lets you stream, connect, govern, and process your data (and materialize it in open table formats) no matter where it lives.

Step 1. Connect Your Operational Systems to Stream Data Instantly

  • Out-of-the-box connectors: Use 120+ pre-built connectors—with 80+ fully managed across the stack like our Oracle CDC Connector—for instant integration with existing data systems.
  • Custom connectors: Bring your own connector and run it confidently and cost-effectively on our fully managed cloud service.
  • Built-in cloud integrations: Enjoy instant access to streaming data directly within AWS, Azure and Google Cloud, so you never have to leave the tool of your choice.

Step 2. Build Data Products Once and Reuse Them Anywhere

Enterprise-grade stream governance for Apache Kafka

Step 3. Enable Self-Service Access to Trustworthy Data Products

  • Ensure data quality at the source: Build trusted, high quality data products with explicit data contracts and schema management with Stream Governance.
  • Discover reusable data products: Help data consumers securely self-serve to search and repurpose data products via Data Portal.
  • Quickly understand complex data relationships: Gain more insights with an interactive, visual overview of data flows and processing with Stream Lineage.

Step 4: Unify Streaming and Analytics With Ease

  • Seamlessly stream data into data lakes: Represent Kafka topics and associated schemas as Apache Iceberg™ and Delta Lake tables in a few clicks with Tableflow.
  • Unlock faster data value for analytics and AI: Skip the ETL and tap into fresh and trustworthy operational data to drive higher-quality data insights.
  • Better together with our partner ecosystem: Leverage strong partnerships and tight integrations with Databricks and Snowflake to meet all your AI and analytics use cases.
Ready to Shift Processing and Governance Upstream?

Learn how Confluent can help your organization shift left and maximize the value of your data warehouse and data lake workloads. Connect with us today to learn how to adopt shift-left architectures and accelerate your analytics and AI use cases.