실시간 움직이는 데이터가 가져다 줄 가치, Data in Motion Tour에서 확인하세요!
Using Kafka to stream data into TigerGraph, a distributed graph database, is a common pattern in our customers’ data architecture. We have seen the integration in three different layers around TigerGraph’s data flow architecture, and many key use case areas such as customer 360, entity resolution, fraud detection, machine learning, and recommendation engine. Firstly, TigerGraph’s internal data ingestion architecture relies on Kafka as an internal component. Secondly, TigerGraph has a builtin Kafka Loader, which can connect directly with an external Kafka cluster for data streaming. Thirdly, users can use an external Kafka cluster to connect other cloud data sources to TigerGraph cloud database solutions through the built-in Kafka Loader feature. In this session, we will present the high-level architecture in three different approaches and demo the data streaming process.